Scrabble: Converting Unstructured Metadata into Brick for Many Buildings

Jason Koh¹, Bharathan Balaji², Dhiman Sengupta¹, Julian McAuley¹, Yuvraj Agarwal³, Rajesh Gupta¹
University of California, San Diego¹, University of California, Los Angeles², Carnegie Mellon University³

Why Metadata for Buildings?
- The major bottleneck to deploy modern building applications is the large human effort to map "metadata" into a usable format.
- Vendor-given metadata commonly contains:
 ○ Point Type ○ Location ○ Equipment Name ○ Network Interface
- Unstructured Metadata Examples:

<table>
<thead>
<tr>
<th>Vendor-Given</th>
<th>Expert's Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG.CRAC-1.TEMPSETF</td>
<td>Zone_Temp_Setpoint N/A CRAC-1</td>
</tr>
<tr>
<td>SC-CRAC-1-MIQ-008.Tmp</td>
<td>Temp_Sensor N/A CRAC-1</td>
</tr>
<tr>
<td>SC.3FLW-HALL.ZN-T</td>
<td>Zone_Temp_Sensor Floor-3, W-Hall N/A</td>
</tr>
</tbody>
</table>

- Reduce the human effort by existing buildings already normalized.

What is Brick?
- Building Metadata Schema designed for Portable Applications.
- Describe all knowledge in a directed graph. Everything is a node (or an entity) that have relationships with each other. E.g., ZNT-1 is an instance of:
 ○ Tags constitute TagSets.
 ○ TagSets have hierarchy for different levels of specification and categories of TagSets.
- Entities can have relationships with each other defined in Brick.

Scrabble Framework

- Basic Idea:
 ○ Character => Tags would be more reusable than TagSets E.g., If ZN=Zone is known, ZN in ZNT, ZN-T and ZN-1 can be known.
 ○ Tags => TagSets are given or easy to learn. E.g., obviously, {Zone, Temperature, Sensor}=> Zone_Temperature_Sensor
 ○ Two stages learning will help reusing existing knowledge.

- Character-level entity recognition using CRF.
 ○ R -> Beginning of RM for "Room". M -> Inside RM for "Room" (BIO)
 ○ Provide character-level error resiliency.
 ○ No predefined delineation rule is required.

- Mapping raw metadata to Tags as Intermediate Representation (IR)
 ○ RM -> Room, ZN -> Zone, T -> Temperature
 ○ Mapping to IR is easier than to exact TagSets.

- Mapping Tags to TagSets by a multilabel classifier.
 ○ {Room, Zone, Temperature} -> {Room, Zone_Temperature_Sensor}
 ○ This layer is resilient to variations as mappings are somewhat known by Brick's structure.
 ○ Structured Classifier Chain is proposed for multi-label classification.

- Select most informative samples to learn from experts.
 ○ Metrics: confidence-based metric, raw metadata utilization metric.
 ○ Ask examples in the test set with low scores to experts.
 ○ Iterate the entire process.

Characteristics of Different Buildings

- We compare 3 buildings from UCSD and 1 building from CMU.
 ○ Tags are more common than TagSets across different buildings.

<table>
<thead>
<tr>
<th>Source Building</th>
<th>Target Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM120.Temp_Sen</td>
<td>R3-WtrTmp</td>
</tr>
<tr>
<td></td>
<td>Water_Temperature_Sensor in Room-120</td>
</tr>
</tbody>
</table>

Evaluations

- Active learning setup: At each iteration, ask selected 10 samples to experts for labels.
- Baseline: BoW -> Multi label classification -> Entropy-based active learning.
 ○ Scrabble outperforms the baseline in any cases.
 ○ The learning speeds between Scrabble w/ and w/o source samples converge around 100 samples, which should not be.

- Logical comparison with existing work.
 ○ The baseline: two different buildings share less features.
 ○ CNN for text classification: good accuracy but not suitable for active learning / transfer learning framework.
 ○ Zodiac: Limited to multi-class classification.
 ○ Bhattacharya et al.: rules are strict and not designed for transferring knowledge to other buildings.