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Why Metadata for Buildings? Scrabble Framework
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e The major bottleneck to deplo;i‘modern b”u.lldlng applications is from source building RM3I—/NT Methods Used
the large human effort to map “metadata” into a usable format. , _ . _ _ ,
Unstructured ‘ R ‘ M 3 N ‘ T ‘
e Vendor-given metadata commonly contains: metadata — | L-CRF |
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o Point Type o Location o Equipment Name o Network Interface BILOU Tag = =
e Unstructured Metadata Examples: Intermediate | Concatenation
_ _ Representation id } =
Vendor-Given Expert’s Interpretation (Brick Tags) i Multi-Label
. . . o
Raw metadata Sensor Type | Location [Equipment Labels ‘ Classifier Chain |
(Brick Tagsets) | Room l Zone Temperature Sensor | =
ENG.CRAC-1.TEMPSETF | Zone Temp Setpoin N/A CRAC-1 — - I " | Using Schema |»
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SC-CRAC-1-MIG-008.Tmp | Temp Sensor N/A CRAC-1 nimad at
SC.3FLW-HALL.ZN-T Zone Temp Sensor | Floor-3, N/A e Basic ldea:
W-Hall o Character => Tags would be more reusable than TagSets
e Reduce the human effort by existing buildings already normalized. E.g., If ZN=Zone is known, ZN in ZNT, ZN-T and ZN-1 can be known.

o Tags => TagSets are given or easy to learn.
E.g., obviously, {Zone, Temperature, Sensor}
=> Zone_Temperature Sensor
o Two stages learning will help reusing existing knowledge.
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] - e Character-level entity recognition using CRF.

[ RM120. Temp Sen ]’— [ R3-WitrTmp
Metadata — Teac h . . . .
Known Tmp = Temperature ¢f— Teach: o R -> Beginning of RM for “Room”. M -> Inside RM for “Room” (BIO)

'R = Room Wir = Water o Provide character-level error resiliency.
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Metadata | Sensor in Room-120 Sensor in Room.3 No predefined delineation rule is required
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Raw

e Mapping raw metadata to Tags as Intermediate Representation (IR)
o RM -> Room, ZN -> Zone, T -> Temperature

What is Brick? o Mapping to IR is easier than to exact TagSets.

e Mapping Tags to TagSets by a multilabel classifier.
o {Room, Zone, Temperature} -> {Room, Zone Temperature Sensor}

e Describe all knowledge in a directed graph. Everything is a node (or | © This layer is resilient to variations as mappings are somewhat known

e Building Metadata Schema designed for Portable Applications.

an entity) that have relationships with each other. by Brick’s structure.
E..g, ZNT-1 is an instance of o Structured Classifier Chain is proposed for multi-label classification.
e [ags constitute TagSets. o Select most informative samples to learn from experts.
o Metrics: confidence-based metric, raw metadata utilization metric.
[ Zone } [Temp} [ Sensor} > {Zone_Temp_Sensor} o Ask examples in the test set with low scores to experts.

_ , . And iterate the entire process.
e TagSets have hierarchy for different levels of specification and

categories of TagSets.

Evaluations
[ Sensor } [ Room }
— e Active learning setup: At each iteration, ask selected 10 samples to
[ Temp_ Sensor } [ Server Room } [ Laboratory } experts for labels.
N e Baseline: BoW -> Multi label classification -> Entropy-based active
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Characteristics of Different Buildings

o Scrabble outperforms the baseline in any cases.
o The learning speeds between Scrabble w/ and w/o source samples

o \We compare 3 bUIldlngS from UCSD and 1 bUIldlng from CMU. converge around 100 Samp|es, which should not be.
o Tags are more common than TagSets across different buildings.
Tag Ceverage Tagset Caverage e | ogical comparison with existing work.
o o I~ 0350.36 [ -0 o The baseline: two different buildings share less features.
2 | - o8 o CNN for text classification: good accuracy but not suitable for active
% A-21056 ™\ 10721056 (A-290.31| ™, 10.35 :”@ﬁ o o6 learning / transfer learning framework.
S A3- 0.7 ﬂ 063|a3]038 043) ~ [N |Ef o4 o Zodiac: Limited to multi-class classification.
SR S . - . o Bhattacharya et al.: rules are strict and not designed for transferring
B-110.41 10.45 | 0.421 ™, |5-1-BERCRENEREY l - knowledge to other buildings.
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