Controlling Actuation in Central HVAC Systems in Buildings

Jason Koh¹, Bharathan Balaji¹, Rajesh Gupta¹, and Yuvraj Agarwal²
CSE, University of California, San Diego¹, CSE, Carnegie Mellon University²

Need for Control Platform

Apps with fine-grained control are missing

Need Abstraction of Control

We propose “Building Control Engine” to provide high level view of control.

Design Goal

1. Provide a library as API
2. Reject unsafe operation
 - Should not exceed operating range. e.g., Temperature Setpoint to 40°F
 - Should not operate too frequently. e.g., Damper command change every 30 seconds.
3. Status of operation per a sensor/actuator is stored/managed
 - Points are dependent on others.
 - Need to track status of each resource, and its dependency information.
4. Logging entire history of control
 - Logging history of all system status
 - Need for both data analysis and system management
5. Rollback
 - In case of system down or user interrupt.

HVAC Background

Sensor/Actuator Dependency Graph

Application Suggestion

1. System Diagnosis
 - Active fault diagnosis
 - System estimation for security
2. System Identification
 - Sensor/actuator colocation
 - Type identification
 - Finding control function
 - Finding dependency graph
3. Personalized Control

Validation Algorithm

1. Unsafe operation
 - Definition of unsafe operation
 - Exceeding normal operating range.
 - Too frequent operation.
 - Each actuator has its own definition of unsafety.
 - Each operation affects dependent points.

Building Control Engine (BCE)

Challenging Scenarios

Example Application: Sensor/Actuator Co-location

Problem: Co-location of sensor/actuators when location metadata is unavailable.

Assumption: Sensor and actuator types are known.

Hypothesis: Co-located points will be distinguishable if unique control signal is applied. The signal is unique in terms of amplitude, frequency, and phase.

Method: Use control to make information more observable.

Algorithm for Co-location

- Apply large pulses to a Temperature Setpoint
- Extract time-series features from each point over all zones

Result: 68% recall with 98.6% precision over 8 zones.