
Demo Abstract: Interactive Building Metadata Normalization

Jason Koh*, Kuo Liang*, Yiming Yang*, Dezhi Hong*, Yuvraj Agarwal†, Rajesh Gupta*,
{jbkoh,kuliang,yiy001,dehong}@ucsd.edu,yuvraj@cs.cmu.edu,rgupta@ucsd.edu

*University of California, San Diego, †Carnegie Mellon University

ABSTRACT
Having standardized metadata is the first step toward deploying
smart building applications over heterogeneous buildings. Such a
conversion process is highly manual because of different conven-
tions in existing building metadata and diverse building configura-
tions. Many machine learning methods have been attempted to ease
the process by reducing the amount of experts’ training examples
and reusing the knowledge in different data sets. However, many of
the end-users, such as building managers and commissioning prac-
titioners, are unfamiliar with machine learning and programming
interfaces. We implement and demonstrate a web-based graphical
user interface whose workflow is designed based on a common
programming interface, Plaster, for building metadata normaliza-
tion. We implement three algorithms, Zodiac, BuildingAdapter, and
Scrabble, though any new algorithms can be added. Users are in-
structed for proper actions with information visualization at each
step to easily complete the procedure. The service is freely available
at https://plaster.ucsd.edu.

KEYWORDS
smart buildings, metadata, machine learning, HCI

ACM Reference Format:
Jason Koh*, Kuo Liang*, Yiming Yang*, Dezhi Hong*, Yuvraj Agarwal†,
Rajesh Gupta*, . 2019. Demo Abstract: Interactive Building Metadata Nor-
malization. In The 6th ACM International Conference on Systems for Energy-
Efficient Buildings, Cities, and Transportation (BuildSys ’19), November 13–
14, 2019, New York, NY, USA. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3360322.3360990

1 INTRODUCTION
Standard metadata schemata provide a common entity discovery
mechanism to different apps, which is a key for large scale appli-
cations (apps) deployment. Several metadata schemata have been
proposed such as Project Haystack and Brick metadata schema [1]
to standardize the representation of entities in buildings and query-
ing mechanisms. However, instantiating such metadata schema
demands a lot of human effort as well as domain expertise. Build-
ings are heterogeneous; they are manually configured by different
vendors with little standard. Metadata schemata have different ways
of annotating context of entities with specific vocabulary sets. Thus,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
BuildSys ’19, November 13–14, 2019, New York, NY, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7005-9/19/11.
https://doi.org/10.1145/3360322.3360990

a domain expert needs to manually convert existing building meta-
data according to a standard schema often by a set of rules, which
does not scale across different buildings and even in a building.

Machine learning algorithms can ease the process by reducing
the number of required training examples or reusing the knowledge
learned from buildings’ metadata for other buildings. For exam-
ple, Scrabble [3] can effectively learn the common features across
different buildings to reduce the required training samples. Buildin-
gAdapter [2] reuses the timseries features learned in a building to
interpret another building’s metadata. While these algorithms are
specialized for their own optimization goals, they share common
components such as a workflow, data models, and programming
interfaces. Plaster [4] standardizes the common components and
individual algorithms just need to implement the common pro-
gramming interface. It is analogous to scikit-learn that defines
a generic interface over different machine models in Python. This
enables benchmarks and integration of different algorithms, and
agile development of new ones.

While Plaster standardizes programming components to ease
programmers’ effort on dealing with different algorithms, users in-
cluding building managers and commissioning practitioners might
be unfamiliar with programming environments. We, thus, imple-
ment and demonstrate a Web-based Graphical User Interface (GUI),
Plaster UI, guiding users to easily follow the workflow of metadata
normalization with different algorithms fitting their requirements.
It is automatically adapted to the user’s configuration highlighting
only the necessary information for each configuration. The service
is freely available as well as the code base is open-sourced1.

2 METADATA NORMALIZATION
Metadata normalization is a task to extract standard metadata from
unstructured information. Fig. 1 shows an example of how an en-
tity’s information is normalized into a standard format such as
Brick [1]. There are various types of available information such
as timeseries data and raw metadata including entity names and
units (Fig. 1(a)). Each of the information types represents a cer-
tain context of an entity such as measurement types and sensor
locations. Diverse machine learning algorithms use such informa-
tion to identify various types of structured metadata as in Fig. 1(c).
RM-101.T is an instance of temperature sensor and it implies
the associated location, RM-101. Some algorithms are optimized
for identifying entity types only [2] while others can identify all
the entities and their relationships from the information about an
entity [3]. Different algorithms also need different types of labels
as in Fig. 1(b).

For all the components in the process, Plaster [4] defines a com-
mon programming interface in Python as well as a unified database

1Web Service: https://plaster.ucsd.edu Code: https://github.com/plastering/plaster-ws

https://plaster.ucsd.edu
https://doi.org/10.1145/3360322.3360990
https://doi.org/10.1145/3360322.3360990
https://doi.org/10.1145/3360322.3360990
https://plaster.ucsd.edu
https://github.com/plastering/plaster-ws


BuildSys ’19, November 13–14, 2019, New York, NY, USA Koh et al.

RM-101.TEntity	Name

BACnet	Unit

BACnet
Description

Timeseries
Data

(a)	An	Entity's	Information (b)	Label	Types

Entity	Type temp	sensor

room id temp

RM

Entity	Name
Parsing

64

BACnet	Unit
MappingTemp

BACnet
Description
Parsing

101 T

64

Temp

temp temp

(c)	Identified	Entity	Types
and	Relationships

RM-101.T

temp	sensor

is	a

RM-101

is	located	in roomis	aR
aw

	M
et
ad
at
a

Unlabeled
metadata

Label
Entity

IdentifierLegend:RM-101.TEntity
Identifier

Figure 1: An Example Normalizing an Entity’s Metadata.

model for all the necessary data types. This enables benchmark and
integration of different algorithms and eases the process to develop
a new algorithm. However, due to the diversity of the algorithms,
end-users, such as building managers and commissioners, need
better guidance in actual user interfaces.

3 PLASTER USER INTERFACE
Plaster User Interface (UI) implements the functions required in the
original Plaster package in a workflow. The canonical functions in
Plaster are insert_examples, select_examples, update_model,
and infer. Their details are found in [4]. These functions are used
throughout our workflow, whose steps are following:
(1) Task Configuration: A user chooses an algorithm or a combina-

tion of algorithms based on their optimization targets. The user
also needs to load data.

(2) Interactive Labeling: A user provides examples for metadata
normalization. Algorithms can choose the most informative
examples with non-redundant patterns. It improves the sample
efficiency reducing the human effort eventually. This is an it-
erative process that involves training models, requesting new
examples, and submitting labels.

(3) Result Review: Once enough examples are given in the previous
stage, the user can visually review the result of metadata nor-
malization in a graph or a table. The user can also export the
result to use it in external systems.
In the workflow, Interactive Labeling is the most complicated

process as users need to iteratively interpret visualized information
and provide corresponding labels. Fig. 2 shows the visualization,
and the caption describes each component in detail. While we
provide the flexibility to revoke the actions, we visually guide users
to only the required actions among many possibilities. For example,
in Fig. 2, the entity’s type has been provided, so the insertion action
is deactivated by showing “Inserted”, and “Next” is activated.

4 DISCUSSIONS
We have implemented and demonstrated how the user should inter-
act with machine learning algorithms to most efficiently normalize
building metadata. With Plaster UI, even though the users are not
familiar with machine learning models and standard schemata, they
can convert their buildings into the standard format such as Brick.
Better accessibility to standard schemata will eventually expedite
the adoption of smart building applications.

While Plaster UI optimizes user interaction patterns, machine
learning models still need to be more scalable in terms of hetero-
geneity of both data and labels. Different buildings have data with
different styles and users would want to normalize them altogether.

Figure 2: A Screenshot of Plaster UI. The bar and the ratio
at the top of the screen show the progress of the current
round. The left panel visualizes different types of RawMeta-
data. At the right panel, users can interactively provide dif-
ferent types of labels. Users may select a customized num-
ber of examples to label in a round with Get button, and
move to different examples byNext/Previous buttonswithin
the round. UpdateModel trains themachine learningmodel
based on the training examples labeled so far. Blue buttons
are guided actions for the user, indicating recommended
next steps. White buttons indicate the actions have been fin-
ished but the user may revoke them. Gray buttons are for
inactivated actions at the current status.

Furthermore, multiple users may want to collaborate each other
for normalizing a set of buildings too. This crowd-sourced labeling
process often incurs inconsistency in labels because of different
understandings of the data and human errors. Thus, underlying
machine learning algorithms should be tolerant of the disagreeing
examples, which could be mitigated by introducing a weakly su-
pervised machine learning framework across different users and
models [5].

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1526841 and 1526237.

REFERENCES
[1] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck,

Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, et al.
2018. Brick: Metadata schema for portable smart building applications. Applied
energy 226 (2018), 1273–1292.

[2] Dezhi Hong, HongningWang, Jorge Ortiz, and KaminWhitehouse. 2015. The build-
ing adapter: Towards quickly applying building analytics at scale. In Proceedings
of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient
Built Environments. ACM, 123–132.

[3] Jason Koh, Bharathan Balaji, Dhiman Sengupta, Julian McAuley, Rajesh Gupta,
and Yuvraj Agarwal. 2018. Scrabble: transferrable semi-automated semantic
metadata normalization using intermediate representation. In Proceedings of the
5th Conference on Systems for Built Environments. ACM, 11–20.

[4] Jason Koh, Dezhi Hong, Rajesh Gupta, Kamin Whitehouse, Hongning Wang, and
Yuvraj Agarwal. 2018. Plaster: An integration, benchmark, and development frame-
work for metadata normalization methods. In Proceedings of the 5th Conference on
Systems for Built Environments. ACM, 1–10.

[5] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. 2017. Snorkel: Rapid training data creation with weak supervision.
Proceedings of the VLDB Endowment 11, 3 (2017), 269–282.


	Abstract
	1 Introduction
	2 Metadata Normalization
	3 Plaster User Interface
	4 Discussions
	Acknowledgments
	References

