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ABSTRACT

Interoperability in the Internet of Things relies on a common data
model that captures the necessary semantics for vendor indepen-
dent application development and data exchange. However, tradi-
tional systems such as those in building management are vertically
integrated and do not use a standard schema. A typical building can
consist of thousands of data points. Third party vendors who seek
to deploy applications like fault diagnosis need to manually map the
building information into a common schema. This mapping process
requires deep domain expertise and a detailed understanding of
intricacies of each building’s system. Our framework - Scrabble - re-
duces the mapping effort significantly by using a multi-stage active
learning mechanism that exploits the structure present in a standard
schema and learns from buildings that have already been mapped
to the schema. Scrabble uses conditional random fields with trans-
fer learning to represent unstructured building information in a
reusable intermediate representation. This reusable representation
is mapped to the schema using a multilayer perceptron. Our novel
semantic model based active learning mechanism requires only
minimal input from domain experts to interpret esoteric, idiosyn-
cratic data points. We have evaluated Scrabble on five buildings
with thousands of different entities and our method outperforms
prior work by 59%/162% higher Accuracy/Macro-averaged-F1 in
a building when 10 examples are provided by an expert in both
cases. Scrabble achieves 99% Accuracy with 100-160 examples for
buildings with thousands of points while the other baselines cannot.
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1 INTRODUCTION

The Internet of Things (IoT) envisions a distributed processing
platform of sensors and devices, that work together to enable new
applications spanning health, transport and energy systems. This
vision faces many real-life challenges. Primarily, the composition
of data and services provided by a diverse group of vendors. These
vendors use different schema (if any at all) even when interfacing
with the same or similar sets of sensors. Emerging IoT solutions like
Apple Home Kit [1] and attempt to standardize such interactions.
However, legacy systems in buildings lack a common information
model, that helps different systems ingest each other’s data.

With a general framework for combination and navigation of
diverse sensory data as a long-term goal, we focus here on methods
that can effectively use data collected from diverse commercial
buildings. This is possible because of the use of Supervisory Control
And Data Acquisition (SCADA) systems that cover over 14% of the
buildings in the US [4]. These SCADA systems can have hundreds
to thousands of data points, i.e., timeseries of measurements, such
as those from sensors in lighting and fire safety systems.

Unfortunately, such raw data is not very useful in building oper-
ations. System operators need contextual information about a data
point to identify type of sensor, the location of the sensor, etc. Such
information is usually carried as “metadata” associated with actual
sensor data. Metadata describing the data points can be heteroge-
neous and inconsistent in naming across buildings and vendors.
This makes it very hard for third-party developers and vendors to
navigate building information. Often a manual mapping is done by
the users of sensor data, which requires significant input from the
domain experts in building systems design and operations. This
mapping process is a bottleneck in deploying portable applications
across building systems or integrating multiple data sources for
analyses. We seek to automate the mapping process with minimal
or no input from domain experts by exploiting known structured
information in the underlying metadata.

Prior research has framed the metadata mapping process as
semi-supervised learning [6, 9, 14], multi-class labeling [12], an


https://doi.org/10.1145/3276774.3276795
https://doi.org/10.1145/3276774.3276795

BuildSys *18, November 7-8, 2018, Shenzen, China

&l a2 0

Source Building Target Buildings
Raw Expert
Metadata RM120.Temp_Sen Toach: R3-WtrTmp
Known Tmp = Temperature Teach:
R = Room Wir = Water
Normalized Temperature Water Temperature
Metadata Sensor in Room-120 Sensor in Room-3

Figure 1: Fast metadata normalization of new buildings with
a known building’s information and an expert’s knowledge.

edit distance based dictionary lookup [23], or transfer learning [13].
However, these approaches either require significant domain expert
input to achieve high accuracy [6, 9, 12], or suffer from low precision
and recall [13]. Both transfer learning and active learning methods
lack in either precision or the human effort to achieve the precision.
We need a hybrid method that can address both aspects, i.e. exploit
existing mappings while augmenting the model further if needed.

We present Scrabble, our framework to retrieve semantic meta-
data from unstructured raw metadata while reusing known infor-
mation in existing buildings to reduce the amount of effort for
domain experts to provide input labels. Fig. 1 provides an overview
of the goal that known metadata can be mapped automatically (e.g.
‘Tmp’ is Temperature in target buildings) and ask domain experts
to provide undiscovered labels (e.g. ‘Wtr’ is Water). Scrabble uses a
two-stage, active learning approach exploiting a known taxonomy
of labels and mapping information from existing buildings. At the
first stage, we learn a Conditional Random Fields (CRF) model [15]
to extract reusable intermediate representations (IR) from character
sequences in an existing “source building” that has already been
mapped to a known schema. In the second stage, we learn a mul-
tilabel classifier to map the IR to actual labels. We use multi-layer
perceptron (MLP) for the multilabel classification with its capability
of handling the high dimension of the input words. For the IR, labels
and the taxonomy, we use a semantic ontology called Brick [5] that
specifies a list of equipment, data points and relationships between
them. We use active learning methods to ask domain experts’ input
for the unmapped data points. Our model enables smoother transfer
of mappings from known buildings to a new target building while
exploiting different types of information sources systematically.

We have implemented and evaluated Scrabble on metadata from
five diverse buildings on 6,551 randomly chosen data points from a
total of 21,802 points. We verified the ground truth of those points
manually. With the IR and proper classifiers, Scrabble extracts enti-
ties from unstructured metadata with an improvement of 59%/162%
higher Accuracy/Macro-averaged-F1 in a building than a baseline
with 10 initial examples. Furthermore, Scrabble can achieve 99%
Accuracy with 100-160 examples for buildings with thousands of
points while the baselines cannot.

2 BACKGROUND
2.1 Smart Buildings Metadata

Modern buildings have many different equipment and control sys-
tems in place to provide services like lighting, heating, and air
conditioning. Much of this infrastructure is supported using sen-
sors and networked into a building management system (BMS)
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() :Top Class TagSet  [_____]: TagSet —>>: hasSubclass

[ Temperature Sensor] [ Laboratory] [Exhaust Fan]

Figure 2: Brick taxonomy example [5]. Point, Location and
Equipment are top level TagSets where the others are sub-
classes of them. E.g., Server Room is a subclass of Room. The
max depth of the hierarchy is 6 and there are 904 TagSets.

Raw Metadata Brick Metadata
ZNT iSA  Zone Temperature Sensor
RM3-ZNT RM3 iSA Room
ZNT isLocatedIn RM3

Figure 3: An example of the metadata normalization. The
raw metadata, RM3-ZNT, converted to Brick in Turtle syn-
tax. ZNT is an instance of Zone Temperature Sensor and RM
is an instance of Room. isLocatedIn explains the sensor is
located in the room.

for remote monitoring and operation. BMSes manages data from
sensors such as room temperature, power meter; from actuators
such as dampers for control of air flow, fans for exhaust; and from
configurations such as the temperature setpoint for heating.

Contextual information of the data are encoded as metadata and
they are manually written by original system vendors. Thus, the
metadata are unstructured and not standardized across different
buildings or even in the same building [8]. Table 1 shows example
metadata of different buildings across two campuses. BACNet [10]
is a network protocol for buildings. There are predefined codes such
as BACNet Type but most of the meaningful information is found
in raw strings such as BACNet Name, Vendor Name and BACNet
Description. Mainly, four types of information are written in the
metadata: point type, equipment, location and network interfaces.
The information is arbitrarily positioned and has many variations.
For example, temperature can be shown as Tmp, Temp, TEMP, T,
Tempreature, etc. It is difficult to formulate deterministic algorithms
that capture all variations such as an abbreviation, single characters
and even spelling errors. Whether a point is a sensor or a setpoint
is also unclear as sensors are not explicitly described. Metadata
can also be implicit, e.g., SFLW-HALL in the third row of the Table
represents W-HALL, a room on the third floor. BACnet’s general
concept of having human readable names and codified metadata is
also common in other standards such as KNX.

2.2 Brick: Building Metadata Schema

Brick is a metadata schema for enabling portable applications for
smart buildings [5]. It provides complete vocabularies and rela-
tionships to describe resources such as sensors and equipment in
buildings in a machine-readable format. Scrabble uses Brick as
target schema but it can be extended to other schemata if needed.
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Table 1: Metadata examples in different buildings on different campuses. Each row in the tables is metadata for a data point

in the upper table and corresponding labels in the lower table.

Campus-Building Vendor Name BACNet Name BACNet Description ~ BACNet Type
A-1 ENG.CRAC-1TEMPSETF = NAE 05 N2 2 VND 162 TEMPSETF Temp Setpoint Analog Output
A-2 SC-CRAC-1-MIG-008Tmp NAE 14 N2 Trunk 1 MIG 008 Temp Temperature Analog Input
A-2 SC.3FLW-HALL.ZN-T NAE 13 N2 Trunk 2 VAV327 ZNT  Zone Tempreature Analog Input
B-1 RM123A Zone Temp 3 N/A N/A N/A
Campus-Building Point Label Equipment Labels Location Labels Network Interfaces
A-1 Temperature Setpoint CRAC-1 N/A VND-162, N-2-2, NAE-05
A-2 Temperature Sensor CRAC-1 N/A MIG-008, NAE-14, Trunk-1
A-2 Zone Temperature Sensor VAV-327 Floor-3, Room-W-Hall Trunk-2, NAE-13, N-2
B-1 Zone Temperature Sensor N/A Room-123A N/A

An entity is an instance of a TagSet in Brick and a TagSet is
composed of Tags. Temperature Sensor is a TagSet with the Tags
Temperature and Sensor. Brick introduces a class hierarchy to orga-
nize the TagSets. At the highest level, they have Location, Equipment
and Point. Equipment is sub-classed into Light, Fan, etc. Points are
timeseries data streams such as Sensors and Setpoints. Location can
be Room, Floor. Fig. 2 depicts a part of the Brick hierarchy.

Fig. 3 compares the raw metadata of an example point and the
equivalent Brick representation of it. It represents a ‘zone tempera-
ture sensor’ in ‘room 3. A zone refers to the area affected by an air
conditioning unit. The Brick representation explicitly describes that
ZNT is an instance of Zone Temperature Sensor, RM3 is an instance
of Room and ZNT is located in RM3 using Turtle syntax [7].

2.3 Related Work

Various approaches have been proposed for reducing the effort
to create an instance of such metadata schema from diverse data
sources. Such methods span over all the aspects of machine learn-
ing such as active learning [6, 9, 14], supervised learning [12] and
transfer learning [13]. The primary goal of all the work is to learn
useful semantic mapping from given information such as timeseries
data and raw metadata to usable labels with the least human effort.
However, each of the work has different focus. Zodiac [6] is an
active learning framework modeling the raw metadata as Bag of
Words (BoW). BoW ignores the order of the words so it can model
different types of metadata such as BACnet unit and vendor-given
name in the same way, with which Zodiac achieves high precision
inference. However, it only focuses on point types which makes
the model simple. Bhattacharya et al. [9] propose a framework
learning synthesis rules for vendor-given names from examples.
It can effectively learn the parsing rules covering all the patterns
inside the target building. However, it has several shortcomings to
be generalized for practical usage. First, it cannot parse a long meta-
data as the number of the necessary rule combinations increases
exponentially along with the length of each metadata point, and
may take a long while to deal with a corpus of points with even 80
characters. It is typical to have 60-80 characters in modern BMSes
while some old buildings only have 15-20 characters. Second, it
only parses a sequence of characters while there can be multiple
sequences describing a point. The information in different columns
of metadata can identify the contexts of the point more clearly

Algorithm 1 Scrabble Process Overview.
Bg: source building, Br: target building. s;:

1: procedure SCRABBLE(Bg, BT)

2 while U(s;) < th Vs; € Br do
3 Use CRF to learn Characters from Bg U D.
4: Use MLP to map Tags — TagSets from Bg
5: Infer Tags of points in B; with the CRF model.
6 Infer TagSets for the Tags of points in By with the MLP.
7 Select samples with low confidence or utilization.
8: Resolve manually on chosen samples.
9: end while

10: end procedure

and richly. For example, Degree Celsius in BACNet unit may help
identifying a point is associated with temperature. Third, it is not
capable of reusing existing mappings even though the buildings
may have similar patterns. Scrabble takes a hybrid approach with
two stages, modeling both sequences and BoW in a systematic
way to achieve trasferrable mappings that exploit different types of
metadata. There are other metadata inference mechanisms heavily
using timeseries data such as BuildingAdapter [13] for transfer
learning and Gao et al. [12], but we focus on understanding the
raw metadata as they are commonly accessible, have much richer
information and more stable than learning from timeseries data. As
detailed in Section 4.3, Scrabble can infer any kind of entity in raw
metadata unlike Zodiac and achieves higher accuracy than Bhat-
tacharya et al’s algorithm in addition to the capability of reusing
existing buildings’ mapping for a new target building.

Project Haystack [3] is another popular standard metadata schema.
Instead of Brick’s TagSet/class concept, a user associates only tags
to an entity in Haystack. Tagging schema is structurally a subset
of TagSet as TagSets consists of Tags. Thus, Haystack is a subset
of Brick in terms of expressivity so algorithms that can infer Brick
can easily do for Haystack. In Scrabble, the first stage using CRF
alone is sufficient to infer Haystack as it maps raw metadata to
Brick Tags, which is theoretically equivalent to Haystack tags.

3 SCRABBLE

Given unstructured metadata for data points in a target building
Bt and ground truth semantic labels for points in a source building
Bg, we normalize the metadata of the target building By into the
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Figure 4: Data mapping from raw metadata to semantic
metadata. CRF maps tokens in raw metadata to the interme-
diate representation, Brick Tags. Multi-label classifier maps
Tags to final labels, TagSets.

structured Brick schema. Our goal is to minimize the number of
examples to extract correct and comprehensive metadata present
in the given unstructured metadata.

Scrabble uses an active learning framework for normalizing meta-
data of sensors in multiple buildings by adopting a transferrable
intermediate layer. We map a sentence from the target building to a
set of Brick Tags using a CRF classifier that trains on samples from
source buildings and examples from domain experts. We use Brick
Tags as a reusable Intermediate Representation (IR) that is free of
building specific metadata. IR is effective in reducing the number
of learning samples if it is easier to learn mapping from inputs to
IR than labels directly [11, 17, 21]. A multi-layer perceptron (MLP)
then maps the Tags to corresponding TagSets. MLP is capable han-
dling high dimension data very well by learning important features
inside hidden layers. We use confidence-based and a Tags utiliza-
tion metrics to identify samples likely to be labeled incorrectly
and resolve them by input from domain experts. Scrabble iterates
through all target building samples until it can identify all building
labels with high confidence. Algorithm 1 summarizes the entire
process and Figure 4 describes the mapping of raw metadata to the
semantic metadata with an example.

Our technique is based on two key observations. First, a word’s
meaning does not change even if its usage varies in different sensors.
In Figure 4, RM is used to indicate Room as a sensor’s location
whereas it can be a part of RMT to represent Room Temperature in
another sensor. The meaning of RM as a Room remains identical in
both cases. Thus, mapping from raw strings to Tags can be reused
across different buildings though target labels may differ. Second,
the relationships between Tags and TagSets can be learned and used
across different buildings. For example, across all buildings, the Tags
Temperature and Sensor form the Tagset Temperature Sensor. Thus,
Tags can be reusable representations of metadata across buildings,
which can in turn be easily mapped to Brick schema. We adopt
this idea from zero-shot learning methods that use semantic codes
[17] and attributes [21]. We reuse the relationships discovered in
a source building when available and domain experts can provide
samples to learn newly observed relationships. We can rapidly
retrieve structured metadata from a new building in this way.

J. Koh et al.

3.1 Terminologies

Figure 4 gives an example for the terminologies. A building has
various points that produce a data stream such as sensors. BMSes
describe points with various types of raw metadata Raw metadata
associated with a point represents a set of labels, for which we use
Brick TagSets. Raw metadata may contain string metadata like point
names and code metadata like units. We call string metadata also a
sentence composed of multiple words. A word may represent a set of
Brick Tags, such as RM represents Room, but it does not have to be
delimited by special characters. A word is decomposed to characters,
of which each is mapped to a BIO token [20] associated with its
word’s Brick Tags (details in Section 3.2.) In the learning process, a
human expert, such as a building manager, provides examples for
mapping a sentence to 1) Tags and 2) the TagSets that the point’s
raw metadata represent. Required examples are chosen by Scrabble
to minimize the total amount of effort.

3.2 Raw Metadata to the Intermediate
Representation

We define a word as a set of characters representing a concept.
E.g., ZN, T, and RM in Figure 4. We map words to Brick Tags as
an intermediate representation. Here, words are not necessarily
separated by predefined delimiters. For example, ZN and T in ZNT
are separable as Zone and Temperature because they can be reused
in other sentences such as RMT for Room Temperature. In contrast,
mapping ZNT directly to Zone Temperature loses the reusability of
ZN and T in other contexts.

Every character in a word is labeled with a BIO (Begin, In, and
Out) token [20] to represent the location in the word. The word ZN
corresponds to the Tag Zone, of which Z is located at the Beginning
of ZN and N is Inside ZN. The BIO scheme captures this relative
position of the character in the word and assigns Z to “B-Zone” and
N to “I-Zone”. The “O” BIO tag stands for Out, i.e., tokens that do
not convey semantic meaning such as punctuations and definitive
articles. In Figure 4, the punctuations ) and ‘-’ will be assigned to
“O” token.

Scrabble learns a Conditional Random Fields (CRF) model [15]
for mapping raw building metadata to Brick Tags with BIO tokens,
e.g it learns that ZNT corresponds to “B-Zone”, “I-Zone” and “B-
Temperature” with examples from source building. CRF makes a
Markov independence assumption, i.e., the tag of a character only
depends on the neighboring characters. We use the following as
input to our CRF model for character j: the jth character itself,
(j-1)th character, (j-2)th character, (j+1)th character, is digit? and is
special character?

We additionally adopt code-based metadata such as BACnet
units other than textual metadata. BACnet defines codes for certain
entries such as units and object types [10]. For example, unit code
62 represents Celsius in BACnet, with which we surely know that
the point is associated to Temperature. In a similar way, a point with
object type "analog input" in BACnet can be considered as a Sensor.
These metadata are scattered in different entries other than in a
single string so methods only parsing a string cannot integrate them
systematically. Scrabble merges Brick Tags from different metadata
at the second stage. Though we only use BACnet metadata, which
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is common in BMSes, this concept can be generalized into any other
code-based metadata that can be interpreted as Brick Tags.

3.3 Mapping Intermediate Representation to
Semantic Labels

We have thus far mapped the raw building metadata to Tags, which
are an intermediate representation (IR) of Brick TagSets, our target
semantic label. Our seconds stage maps Tags to TagSets. As the
Brick schema can represent a general building, a classifier that
labels TagSets from Tags can be shared across different buildings.
Mapping from Tags to TagSets is challenging because not all Tags
of a TagSet may be present when we perform the raw metadata to
IR mapping, e.g., Sensor is often omitted in Zone Temperature Sensor.
A single Tag can be attributed to different TagSets, and we need to
identify which of these TagSets is the correct semantic mapping.
For example, the Tag Room may correspond to the location TagSet
Room or to a point TagSet like Room Temperature Sensor.

We use Bag of Words (BoW) with Term-Frequency Inverse-
Document-Frequency (TF-IDF) [22] scheme to vectorize IR. BoW
counts the occurrence of each Tag learned from a sentence and
stores it as a feature vector. The length of the feature vector, i.e. its
dimension, is the number of Tags in the Brick schema. TF-IDF skews
the Tag counts to reduce the importance of common words such as
‘the’, ‘to’. Learning standard classifiers on BoW such as a decision
tree is an intuitive approach to learn the mapping the between IR
and TagSets. However, there are several difficulties to learn such
classifiers. First, a set of Tags generated from a sentence represents
multiple TagSets, which is a multi-label classification problem. In
our model example, the raw metadata “RM3-ZNT” describes a Zone
Temperature Sensor and a Room simultaneously (Figure 4). As the
relationships among Tags for a sensor are unknown, what Tags in
the set are used for what types of TagSets is also unknown. We
need to identify multiple labels from one distribution. From the
set of Tags, {Room, id, 0, Zone, Temperature}, in Fig. 4, we need to
identify two TagSets, {Room, Zone Temperature Sensor}. Second,
samples are significantly biased across different buildings. There
are points widely used such as Zone Temperature Sensor while some
points specific to control special equipment occur only once. In the
four buildings of our data set, 17% of TagSets account for 90% of
TagSet occurrence on average and 34% of TagSets occur only once.
Moreover, different buildings would have different types of points
and metadata. A specific type of equipment may exist only in a par-
ticular building. Such new information cannot be pretrained from
a source building. To address these challenges, we propose three
approaches in Scrabble: sample augmentation, a domain agnostic
classifier and iterative sample selections.

3.3.1 Sample Augmentation. Samples in a building are inher-
ently biased toward the building’s configuration and its original
installer’s writing style. We synthetically generate samples from
the schema and the given building’s samples to mitigate the biased
samples in three ways.

(a) Brick Samples: The schema provides samples of mapping
from Tags to TagSets as a TagSet is a composition of some Tags
(e.g., Zone, Temperature and Sensor for Zone Temperature Sensor).
We insert sets of Tags for each TagSet and a Tag in each set has
a random frequency from 1 to a threshold, thtqg, where thyqg

BuildSys *18, November 7-8, 2018, Shenzen, China

is the median frequency of Tags inferred in a sensor of a source
building. The number of the generated schema samples, th;s, is
a hyper-parameter chosen empirically with a validation set. We
limit each schema sample to have just one label. For instance, we
generate a sample mapping tags of (Temperature, Sensor) to a TagSet,
(Temperature Sensor). We avoid adding samples with multi-labels
because the number of possible combinations of different TagSets
increases exponentially to the number of total TagSets.

(b) Negative Samples: We can also add more possible combi-
nations of TagSets from the given samples using a logic similar to
Brick Samples. Given a set of labels for a sample, we add its varia-
tions without a TagSet by removing Tags related to the TagSet (e.g.,
remove the Tag Room} to remove the TagSet Room in the label set
of Room, Zone Temperature Sensor}.) It prevents overfitting to given
samples while generating tof an acceptable number of samples in
the order of the number of given samples.

3.3.2  Multi-layer Perceptron for Multi-label Classification. We
use Multi-layer perceptron (MLP) to model the mapping from Tags
to TagSets. MLP uses fully connected (FC) neural network layers
to act as a universal function approximator [19]. Here, we use
sigmoid as the non-linearity function and use binary cross-entropy
for the loss evaluation in the training phase. We use 2 FC layers and
each of them is followed by a dropout [25] layer to generalize the
model. This MLP stage receives vectorized BoWs for Brick Tags as
inputs and infers a set of TagSets the vector represents as outputs.
Our input data are considerably hard because the Tags are in high
dimensions but sparse. We have empirically evaluated other multi-
label classification models such as classifier chains, random forests,
but MLP outperforms other methods because of its dimensionality
reduction ability.

3.4 Sample Selection

We cluster sentences based on the tokens to identify similar sen-
tences [6, 9]. Each sentence is converted to a vector of the BoWw
model with tokens usually defined by contiguous alphabets or spe-
cial characters. This tokenization need not be precise as it just needs
to recognize similarities among sentences. The vectors are clustered
based on hierarchical clustering and a small threshold determines
output clusters. Balaji et al. [6] empirically show that if the thresh-
old is small enough, sentences in a cluster have the same label for
sensor type, which is the most complex information in metadata.
When selecting an example to learn, we pick one randomly from
the most uncovered cluster. The coverage is defined as the rate of
sensors given examples over the number of sensors in a cluster.
This method is generally applicable for determining what examples
an expert should provide to derive the best learning speed.

3.5 Active Learning with Domain Experts

We iteratively update the learned model with the target building’s
sample given by an expert. Target building’s raw metadata may
contain some points unobserved from the source buildings such
as new systems and new conventions that should be taught by an
expert. We have to carefully select samples for experts to answer so
that we can achieve the fast learning ratio with minimal examples,
which is called Active Learning (AL). In general AL, we evaluate
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unlabeled samples with the learnt model and pick the most infor-
mative samples based on a certain query strategy. A domain expert
provides labels for the samples, we learn a new model with the
added samples, and iterate the entire process.

As Scrabble consists of two-stages with one from characters to
Tags with CRF and the other from Tags to TagSets with MLP, a
query strategy should pick good examples covering both stages. We
exploit two types of query strategies for different stages. The first
one is to find the lowest confident inference at the CRF stage and the
lowest entropy of inferences at the second stage. CRF is a sequence
model that maps a sequence to labels. Among various ways of
querying strategies [24], we select least confident inferences (LC)
for its simplicity, interpretability and less computational complexity.
Settles and Craven [24] show that LC’s performance is competitive
compared to the others with less computational cost. Confidence
of a CRF inference is an inferred sequence’s conditional probability
but we normalize it with its length because the probability highly
depends on the length of the sequence.

D(s, b, 0) = log(Py(s, b))/length(s), (1)

where s is a sentence with characters, b is BIO tags inferred from
the model . Py is a CRF’s loss function!.

The second stage is multi-label classification and single label
confidence cannot represent how the inference is confident in gen-
eral. We instead exploit an assumption that identified Tags should
be fully mapped to certain TagSets and query how much Tags are
exploited in the current inferences. The assumption is based on
the observation that the original installers put only meaningful
information into the raw metadata as the space for the metadata is
limited and it needs to provide useful information for maintenance
and operations. For example, if given Tags are Temperature and
Sensor, mapping it into Sensor is incomplete as Temperature is not
used in the inference. Tags utilization is defined as follows:

_ 2jusagerags(0ij,Ti)
" length(s;) — #(O-Tag)

Utags(gia Ti) (2)

_ 1, ifﬂti,m | 91‘,]‘ EtimANtim€T;

usagetags(gl,], T = {0, otherwise,

where ©; is a set of Tags identified for the point and T; is a set of
TagSets inferred from ©;. 0;, ; are Tags in ©; and t; , are TagSets in
T;. O-Tags are ignored in the calculation as they have little meaning.
We pick target building samples with low utilizations by the diverse
random sample selection method. We dynamically choose outliers
with utilizations less than an average of the entire utilizations
subtracted by their standard deviation.

The entire process is summarized in Algorithm 1. Models for
both Tags (intermediate representation) and TagSets (labels) are
initially learned from a source building. We infer Tags and TagSets
in the target building. Then, we calculate all utilizations of metadata
at the target building and randomly choose N diverse samples. We
set N as 0.5% of the target dataset size, but it is a hyper-parameter
dependent on heterogeneity of a target data set and the learning
speed of a user’s preference. An expert provides labels of the asked
samples such as positions of words, their corresponding Tags and
TagSets. All the models then are learned with the updated data set.

IFor the exact CRF loss function, please refer the original literature [15].
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These steps are iterated until all the utilizations of raw metadata in
the target building is higher than a threshold.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup

4.1.1 Datasets and buildings. We evaluate the framework with
three buildings from campus A (A-1,2,3), one from campus B (B-1)
and the other one from campus C (C-1). C-1 is one of the build-
ings used in ProgSyn [9]. Due to the huge amount human effort
for labeling, we randomly choose 1000 examples per building for
our evaluation in A-1,2,3 and B-1, and verify them manually for
ground truth. However, we use the entire points in C-1 to exactly
compare Scrabble’s performance with ProgSyn. Table 2 summarizes
the statistics of the buildings. Missing Tags indicates the number
of Tags shown by its corresponding TagSets. With less missing
Tags, it would be more straightforward to map them to the target
TagSets. A-1,2,3 and B-1 have more informative metadata with a
longer metadata size and the contained TagSets. C-1 has relatively
concise metadata with 21.7 characters metadata in average.

We first analyze the difference between the buildings for raw
metadata and ground truth labels. Fig. 5a describes the rates of
words in Bt occurring in Bg to show the possibility of reusing
the model from source buildings. Words are defined as contiguous
letters with a unit meaning that can be mapped to Brick Tags.
Words coverages equally weight each word and the weighted word
coverages includes frequencies of words in each building. It shows
that at least a half of the words in Bt can be obtained given Bg, but
the other half has to be learned with expert input. The gap between
word and weighted word explains more frequent words are more
common across different buildings. Thus, using Bs would help
understand common words in Br. These similarities are directly
reflected in the learning rates of Scrabble in the later sections.

There are 119 TagSets and 101 Tags in a building on average
among the 904 TagSets and 284 Tags defined in Brick. The similari-
ties of Tags and Tagsets across buildings are shown in Fig. 5b. Tags
model would be more transferrable between buildings as Tags are
more shared between buildings than TagSets. We suspect Scrabble
will perform better when the source and target buildings have sim-
ilar metadata style. However, even when target building metadata
style is different, our hypothesis is that the learning rate would be
better compared to learning from scratch.

4.1.2  Implementation. We implement Scrabble? in Python with
PyCRFsuite [16] for CRF, Keras [2] for MLP and scikit-learn [18] for
the other machine learning algorithms. All the datasets are stored
as files and the ground truth datasets are used as a domain expert
iteratively providing labels for active learning.

4.2 Evaluation Metric

We infer a set of TagSets from raw metadata. We use a label-based
and an example-based metric [26].

p1Yi 0 h(x;)|

=LY U hGe)|

e MacroFi(h) = é Z;I:l Fyj

o Accuracy(h) = Il’ >

2Scrabble repository: https://github.com/jbkoh/scrabble
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a1 . Total Total  Av Av Av Av Avg Len of
Building  Points (selected) TagSets Tags TagS%:ts Require(gl Tags Existingg Tags MissinggTags Mitadata
A-1 4593 (1000) 129 122 6.30 8.67 7.83 1.09 67.7
A-2 1914 (1000) 120 96 7.12 9.23 8.62 0.83 67.9
A-3 4381 (1000) 137 111 6.90 9.85 9.00 0.94 74.9
B-1 8363 (1000) 90 73 4.37 6.36 6.30 1.35 59.4
C-1 2551 (2551) 68 65 3.03 5.17 3.69 2.71 21.7

Table 2: Quantities of datasets. We choose 1000 points from each building randomly for the evaluation. The numbers of Tags
and TagSets explain diversity of labels in buildings. The numbers are also averaged over data points. 1.1 Tags should be learned
from example patterns, which accounts for 26% of a TagSet in average.

Tag Coverage Tagset Coverage
A N | 062 | 058 | 047
w0 .
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@ ~
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Target Building
(a) Raw metadata similarity across buildings. This shows how much
a target building’s raw metadata already exists in a source building.
Weighted word coverage considers the frequencies of words.

Tag Coverage Tagset Coverage
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(b) Tags/TagSets coverage: Coverage is the rate of common Tags and
Tagsets between two buildings over those in the target building,
showing Tags are more common than TagSets.

Figure 5: Similarity Comparison across Buildings’ Datasets

where h is a model, p is the number of samples, g is the number
of labels, x; is an ith input vector and Y; is ith label set. h(x;)
produces x;’s inferred labels. Accuracy calculates an average ratio
between the number of correctly inferred labels and the sum of the
correct labels, irrelevant labels and misclassified labels per sample.
It captures how well the entire data set is classified, but the metric
can be skewed by dominating classes. In contrast, Macro-averaged
F1 (Macro Fi) captures the normalized mean of measures F; scores
across classes. It can exaggerate incorrect inferences of classes with
rare samples though it provides a good estimation of the model’s
class coverage. In our dataset, a few classes such as the name of
the Building occurs in all points, while a few classes such as pump
occur in very few. Such disparity in class samples causes the two
metrics to differ significantly.

4.3 Baselines

For our baselines, we use two algorithms; the program synthesis
(ProgSyn) [9] and a multi-label version of Zodiac [6]. ProgSyn is

a promising solution for parsing strings but has several critical
drawbacks as discussed in Section 2.3. In addition to the drawbacks,
the algorithm cannot parse a string if there are repeated labels.
In A-1,2,3, there can be repeating labels across metadata types,
so ProgSyn simply cannot be executed over the datasets. Thus,
ProgSyn is excluded in buildings other than C-1 in our evaluation.

Due to the limitation of the ProgSyn, we devise another baseline.
Zodiac is an active learning framework for inferring point types
from raw metadata while Scrabble extracts all possible labels - point
type, equipment type, location. Zodiac vectorizes the raw metadata
with BoW scheme and learn a multi-class classifier but it is limited
to infer point types only. We modify Zodiac to infer multiple labels.
We first use TF-IDF scheme instead of count vectorization to ac-
count for variation in word frequencies across different buildings.
We use Classifier Chain of RF Classifiers for multilabel classifica-
tion instead of a single RF classifier. Zodiac uses confidences of
predictions to determine the most uncertain samples to ask to ex-
perts, but there is no single confidence representing the inference
on a sample in multi-label classification because each class has its
own confidence. We instead use entropy of class probabilities per
sample [24]. The rationale is that if a sample is confidently inferred,
its confidences of each class will be close to either zero or one.
Entropy is high when a distribution is extreme and we can know
that if a multi-label inference is not confident when an entropy of
the inferences is low. An expert is asked to provide labels for 10
samples with the lowest entropy for each iteration. Note that map-
ping a BoW vector to a set of TagSets has a limitation of losing the
relationship between actual words and the labels. For example, it
cannot associate a Room label to the portion in the string represent-
ing the room including its identifier like room numbers. It is very
often important to identify actual room number or device IDs for
applications to properly take actions for the target object. Scrabble
can traceback the mappings from characters to actual TagSets and
identify actual names together.

Baseline results of five buildings are shown in Fig. 8. For C-1,
ProgSyn’s learning rate is steep in the early stage, but it slows down
soon. Furthermore, it cannot reach 99% Accuracy because it lacks
in the capability of accumulating more examples once it reaches the
point where every metadata are qualified. For multi-label Zodiac,
we observe that the words are similar in the buildings in the same
campus A as their accuracies are initially higher than one being
transferred from/to B-1. In the baselines, accuracies initially in-
crease rapidly with the sample numbers because samples are biased.
A few examples can represent many others. Macro F; increases
linearly which shows that the sample query mechanism is valid.
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Figure 6: Learning rate of CRF mapping characters to Brick
Tags. It compares the learning rate with the different num-
bers of source building examples.

In all cases, the baseline has no notable gain with source buildings
initially with 10 examples. It shows that it is hard to exploit differ-
ent buildings together with the naive features. All of the buildings
have the problem in achieving high Accuracy like 99% within 200
examples. For example, its best case is achieves 99% accuracy at 210
examples in A-1 and the worst case is 98% accuracy at 300 examples
in A-3. We conclude that we need a framework converging faster.

4.4 Experimental Results

We individually evaluate the first stage (characters = Tags), the
second stage (Tags = TagSets), and the entire framework. Our
experiments initially take 10 examples randomly chosen by the
method in Section 3.4 and 10 examples per iteration based on the
methods in Section 3.5 for 20 rounds. All results are averaged over
four experiments.

4.4.1 CRF Evaluation. Scrabble maps characters to BIO token
labels with CRF and concatenates them to form Brick Tags. Fig. 6
shows the results of learning the tags of a target building with
source building data. Initially, 10 samples are randomly selected
based on the mechanism in Section 3.4 and samples of the source
building are uniformly randomly chosen. In each iteration, the
models are learned and tested, and then the expert gives 10 different
examples with lowest confidences. The metrics in the figure are for
Brick Tags, which are the features used in the next stage.

Fig. 6 shows that 200 samples from Bgs improves F; from 82.6%
to 93.7% and MacroF; from 14.0% to 61.7% in A-1=A-3, and from
82.8% to 88.9% and from 16.8% to 54.7% in B-1=A-1 initially than
learning without Bs samples. A-3 easily benefits from A-1 as they
are in the same campus with similar conventions as described in
Fig. 5a. F1 is high as 94% from the beginning with A-1. Even without
A-1, F; is high as 82.0% because of several dominant words such as
building names or location like Room occurring in most of the raw
metadata. MacroF; also improves from 14.0% to 61.7 % and 60.0%
by adding 200 and 400 examples from A-1, exploiting the similarity
between A-1 and A-3. Even though the sample query mechanism
is valid as the metrics monotonically increase, MacroF;’ converge
around 100 samples. There is little difference between 400 samples
and 200 samples for A-1 = A-3.

However, for buildings from different campuses (A-1 = B-1),
we observe that MacroF; converges lower when there are source
data than one without source data. Still, there is a large gain in
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Figure 7: Learning rate comparison of different configura-
tions for TagSet classifier based on ground truth Tags. SA
stands for sample augmentation, TS means learning with
timeseries data, and the numbers are the number of samples
from a source building.

MacroF; initially due to certain similarity of common words such
as Room. The degradation of MacroF; in the later stage would be
due to the overfitting. Hyperparameter optimization needs to be
investigated more. In general, adding samples from Bg improves
learning rate in all cases initially, but may decrease MacroF; when
there are many examples with different styles. It shows Scrabble’s
initial transferrability but more generalizability with large data sets
should be investigated more.

4.4.2  TagSet Classifier. To independently evaluate the perfor-
mance of the TagSet Classifier, we presume the TagSet classifier
receives correct Tags from the first stage. Fig. 7 shows how each
component improves the learning rate of a target building based
on Accuracy and Macro Fi. The naive scenario without sample
augmentation and samples from the source building achieves low
MacroF; as 11.1% and moderate 81.2% Accuracy initially. Sample
augmentation (SA) in the experiments includes all the two types dis-
cussed in Section 3.3.1. As it provides valid examples not included
in the given small Br’s data set, MacroF; is also increased from
11.1% to 36.5% though the accuracy rather decreases. In the naive
scenario, common TagSets such as Room can be simply identified
by a few examples, represented by initial high accuracy but low
MacroF;. While the benefit of this layer is consistently higher than
naive approach between similar buildings, it is unclear for buildings
in different campuses.

4.4.3  Overall Performance. We evaluate five directions of ac-
tive learning with knowledge transfer to cover different types of
coverages found in Fig. 5a. While multi-label Zodiac and Scrabble
select 10 examples per iteration, ProgSyn picks a sample in each
iteration from the beginning. Due to the long experiment time as
five minutes to a few hours per iteration in learning CRF model, we
restrict samples per source building to 200 instead of the entire 400.
The analysis in Section 4.4.1 already shows that learning with 200
Bs samples gives similar results to 400 samples for the first stage.

As an active learning framework, Scrabble outperforms both
ProgSyn and multi-label Zodiac for Accuracy and MacroF; in gen-
eral. In C-1, Scrabble has 83.2% Accuracy and 25.3% MacroF; while
ProgSyn shows 42% and 12% initially with 10 samples. Scrabble
also continuously outperforms and can reach 99% Accuracy while
ProgSyn cannot. Compared to multi-label Zodiac, Accuracy and
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Figure 8: Learning Rate of Scrabble’s Entire Process. At the left side of each arrow are source buildings and at the other side is a
target building. Note that ProgSyn is only working with C-1 due to its limitations. ProgSyn also ceases before achieving high
accuracy because of its deterministic algorithm. In general, Scrabble shows better performance exploiting existing buildings
in the same campus with similar patterns. Even across different campuses, Scrabble does not degrade accuracies.

MacroF; of the best case of A-1,A-2 = A-3 are 83.2% and 25.3%
initially with 10 samples, while multi-label Zodiac’s are 74.6% and
9.78%.

Furthermore, it shows the knowledge accumulation by showing
adding more examples from source buildings results in similar
or better initial inferences. Accuracy and MacroF; of learning A-
3 without source buildings are 73.6% and 11.9%, which 8.6% and
15.5% lower than learning with source buildings initially. However,
we again experience MacroF; degradation in later stages possibly
caused by overfitting. Our hypothesis is that source buildings’ data
distribution could confuse the evaluation metrics used for sample
selection. The coverage of the words and Tags would affect the
results as well. While using B-1 for A-3 improves the accuracies
consistently, using A-3 for B-1 disturbs the learning rate. A-3 has
more diverse patterns than B-1 as in Section 4.1.1, which would
add noise to B-1’s model more than the other way.

Overall, Scrabble always shows better performance than the
other baselines including ProgSyn and the multi-label Zodiac. When

10 samples are initially given, Scrabble has 67%/31% Accuracy/MacroF;

than ProgSyn’s 42%/12% for C-1, and 83%/25% than the multi-label
Zodiac’s 75%/9.8% at best. To achieve 99% Accuracy, Scrabble re-
quires 100 examples for C-1 while ProgSyn cannot achieve. For A-3
using A-1 and A-2, Scrabble requires 160 examples while the modi-
fied Zodiac needs 280 examples for 98 % Accuracy. Scrabble shows
the possibility of reusing the models with intermediate represen-
tations though a model that is more generalizable across different
data patterns is still a future research topic.

5 DISCUSSION

5.1 Learning from Time-Series Features

A way to augment the transfer learning process is by using time-
series data, of which features are more common across different
types of buildings [13]. Tags can be differentiated using the features
from the data collected by the building [12]. E.g., a Temperature
related sensor may have an average around 70°F for indoor tem-
perature. We choose the source building to be A-1 and the target
building to be A-3. We extract 16 time-series features, such as mean

B Precision Validation
1.0 o

BN Precision Test B Recall Validation B Recall Test

Scores
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@
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Figure 9: Tags Inference from timeseries features with source
building (A-1) at the target building (A-3).

and Fourier Transform values, from both buildings to train a ran-
dom forest model as a multilabel classifier to model Tags that points
represent in the source building. We infer Tags of interest at the
target building with the learned classifier. The result is shown in
Fig. 9, where we compare the precision and recall.Fig. 9 shows
that validation and test sets track each other, which indicates that
time-series features can be used to augment the transfer learning
process. However, the competence to augment the transfer learning
process is limited to how diverse the data is at the source building.
From Fig. 5b we can see that the Tag coverage for A-1 = A-3is 75%,
this means that our model, initially, will not be able to represent
25% of the Tags for building A-3. Furthermore, Tags occurrences
in buildings are significantly biased as discussed, there are quite
a few Tags which only have time-series data representing those
particular Tag, which is not enough data to train the model ade-
quately. Only several Tags with significant numbers can be properly
modeled by timeseries features.Hence, it limits the effectiveness
of augmenting the learning process. We add the Tags determined
by timeseries features to the ground truth and test the TagSet clas-
sifier’s performance as shown in Fig. 7. Its accuracy is similar to
the the original TagSet classifier, but Macro F; decreases due to the
improper representation of rare Tags by timeseries features.
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Figure 10: An example of semantic postprocessing with Brick.
5.2 Semantics Postprocessing

We identified TagSets from raw metadata. There are more informa-
tion embedded in the raw metadata both explicitly and implicitly.
We infer identifiers (IDs) of entities in the same way as TagSets
though they are not included in the evaluation metrics because
they may overstate our performance. Two types of IDs such as
equipment number or a hall name are positionally defined to indi-
cate whether they qualify a TagSet right or left to the ID. We can
glue the IDs to TagSets to reconstruct original entities’ name. In
Fig. 10, ID’s position confines Room to Room 3. Temperature Sensor
does not have corresponding ID, but rather it is common to use
the entire name as an ID. Another type of information is relation-
ships between TagSets. A Temperature Sensor may reside in a Room,
which is not explicit in metadata but a domain expert can infer.
Such relationships can be also inferred by a schema with relation-
ships such as Brick defines canonical relationships between entities
in buildings. In Fig. 10, we can explicitly know that “RM3-ZNT”
is a Sensor and “Room 3” is a type of Location. The only possible
relationships in Brick for them is hasLocation so we can explicit the
semantic relationships among them without human intervention.
The above two mechanisms are excluded in our analysis due to the
lack of technical novelty but notable for practical use.

6 CONCLUSION

We have proposed and evaluated Scrabble, a framework to normal-
ize unstructured metadata by exploiting the schema mapping from
known buildings to a target building. Scrabble uses a schema, Brick,
for an intermediate representation of labels, as well as, the labels
that raw metadata may represent. We have shown that Scrabble
outperforms 59%/162% in terms of Accuracy and Macro-Averaged
F; than the prior work while allowing it to achieve 99% Accu-
racy with 100-160 examples for buildings with thousands of points.
While various building schemata have been in the interest of smart
building researchers and field engineers for building application
deployments, instantiating such schemata has required huge effort,
blocking adoption of modern applications by its cost. Scrabble will
help adopting such schemata for building applications with their
potential to save energy and improve the quality of life for people.
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